Ballast Water Treatment Systems: Practical Considerations

Who is the Shipping Federation of Canada?

- Incorporated by an Act of Parliament in 1903
- Represents owners, operators and agents of ocean ships trading at Canadian ports, particularly in the Atlantic, St. Lawrence and Great Lakes regions
- Core membership of 75 Canadian companies that own, operate or act as agents for over 200 international shipping lines trading to Canadian ports
- Ships represented by Federation members transport over 90% of the trade moving between overseas ports and eastern Canada

Shipping Federation of Canada

Committed to a safe, competitive, environmentally-responsible and quality-oriented marine transportation system.

Our primary activities:

- Promote and Protect the Trades;
- **Inform** members of legislative, regulatory or operational developments;
- **Support operations** (water levels, pilotage, port infrastructure, contracts with response organizations, Services to ships from Coast Guard navaids and icebreaking, waste management, waterway managers, etc.);
- Provide training;
- Increase industry's profile

The Federation's approach to environmental issues is based on:

- Market access (including social licence to trade);
- Managing expectations & feasibility: technology and operational viability;
- Continuous improvement: from accident avoidance, to compliance, to quality management, to best practices, to sustainability;
- Relationships with regulators, environmental groups and coastal communities;
- Communications, public image (myth vs reality), branding.

Our Approach to Environmental Issues

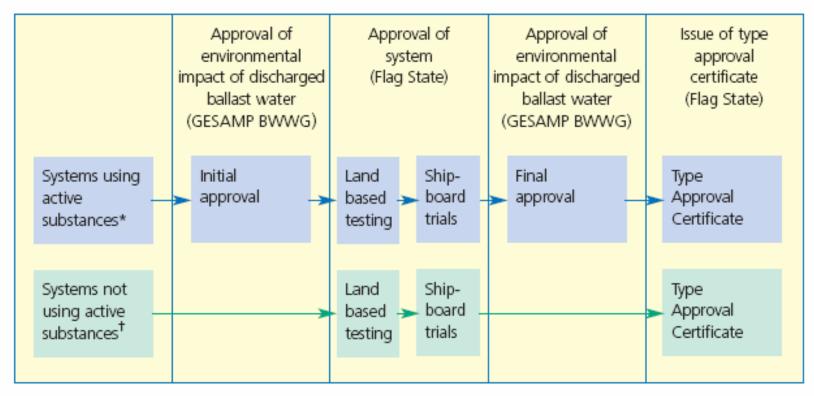
Guiding principles:

- International framework
- Best practices (social licence to trade)
- Continental (trade route) perspective
- Federal context

Seaway Trade: Some Facts & Figures

- 2008 Seaway Navigation Season:
 - 4234 vessel transits through the Montreal / Lake Ontario and Welland Canal
 - 40.800 million metric tonnes of cargo
- Ocean-going vessels:
 - Traffic share: 25%
 - Origins / Destinations: Europe, South America,
 Middle East, Africa

- Key criteria for adopting & implementing a ballast water treatment system:
 - It must be safe (operational level and crew)
 - It must be environmentally acceptable
 - It must be economically viable (retrofits)
 - It must work


- Current ratification status: 18 countries (15.27% world fleet tonnage).
- Implementation Deferral:
 - Ships constructed in 2009 with ballast water capacities of less than 5000 m3 are not required to comply with the ballast water discharge standard included in Regulation D-2 until their second annual survey, but no later than December 31, 2011.

IMO Approval Process

^{*} Includes chemical disinfectants, e.g. chlorine, CIO,, ozone

Source: Lloyd's Register – Ballast Water Treatment Technology

[†] Includes techniques not employing chemicals, e.g. deoxygenation, ultrasound

Technologies: Current Status

- Basic Approval: 16 systems
 - First step in the approval process for systems using active substances
- Final Approval: 8 systems
 - Includes sea-based and land-based tests; the sea-based test alone requires six months of testing
- Type Approval: 6 systems
 - Certificate issued by the Flag Administration, usually 2 years after application for Basic Approval

	Size (m²)		Height	Capital Expenditures (\$ '000)		Operating Expenditures	Power
	200 m ³ /h	2000 m ³ /h	m	200 m ³ /h	2000 m ³ /h	\$/1000 m ³	kW/1000 m ³
Minimum	0.25	1	1.38	145	175	0	4
Maximum	25	145	4.3	780	2000	200	220
Mean Value	7	26	2	375	875	47	7.67

Source: Lloyd's Register – Ballast Water Treatment Technology, 2008.

- Ballast water treatment technologies:
 - Power is the biggest operating cost; for some systems, power requirements may be an issue
 - Some systems (electrolysis and electrochlorination) are complicated to operate
 - Chemical systems: need to be neutralised before discharge in waters (up to 24 hours). Issues related to storage space, availability in ports of call
 - Deoxygenation: processes will take 1-4 days

Commercial Availability

- In July 2008, 56 units were installed on-board ships
- Possibility of up to 55,000 retrofits between now and 2016
 - Creates issues related to drydock availability for retrofits
- Projected production varies between 40 units/year for some manufacturer to thousands units/year
 - Few of these systems have been tested in freshwater

State Ballast Water Programs - Results

- Technology developers Uncertainty over performance standards slows technology development:
 - Size of the potential market will influence technology development and investments
 - Some State standards cannot yet be measured, hindering technology developments
- Shipowners/operators Delays in technology investments:
 - Disconnect between technology and regulations
 - Regulatory uncertainty inhibits investments
- Industry associations Difficulty developing consistent and coherent compliance guidelines

Impacts of Intermodal Shifts

Effect	Ship	Rail	Truck
Fuel use – tonne-km per litre	312	181	75
Greenhouse gas emissions – grammes per tonne-km	10	17	33
NOx – g/tonne-km	0.253	0.3	0.83
VOCs – g/tonne-km	0.008	0.024	0.04
CO – g/tonne-km	0.011	0.092	0.49
PM10 – g/tonne-km	0.021	0.011	0.004
Land occupied – hectares	10,000	10-15,000	36,000
Accidents: injuries per tonne-km	0.23	3.12	13.22
Spills	L	Greater than ship	
Noise – noise depreciation cost per tonne-km	L	M	Н
Congestion – delay time or \$ per tonne-km	L	M	Н
Aesthetics	L	M	Н
Introduction of nonindigenous species	Н	Less than ship	

Source: Lawson, 2007.

Environmental Advantages of Marine

Source: Great Lakes St. Lawrence Seaway System website, 2007.

Key Messages

- Regulatory fragmentation can hinder technology improvements
- Onboard ballast water treatment technologies are the optimal solution (but need UNIFORM STANDARDS THAT ARE EFFECTIVE AND ENFORCEABLE) National Acadamies
- Build on current efforts: the result may not be ideal, but it is a step in the right direction (adaptive management = NA)
- Collaboration with the regulated industry is essential: will result in more meaningful buy-in and faster implementation

Fragmentation

- Fragmentation is current state of affairs
- State Permits
 - Multiplication of paperwork requirements
 - Zero enhancement to prevention
- No single standard
 - Moving target for technology developers
 - Production and installation retarded

On-board Treatment

- On-board treatment of ballast water
 - Optimal solution for international shipping
 - Needs attainable carriage requirement
- Key criteria for adopting & implementing a ballast water treatment system:
 - It must be safe (operational level and crew)
 - It must be environmentally acceptable
 - It must be economically viable (retrofits)
 - It must work

Guiding Principles

- Ballast water governance must fit guiding principles:
 - International framework
 - Best practices (social licence to trade)
 - Continental (trade route) perspective
 - Federal context

Build on Current Efforts

- Scientific research CAISN
- International Ballast Water Convention
- Seaway and Canadian Regulations:
 - Including effective bi-national enforcement
 - Proven track records, increasing compliance rates
- United States Coast Guard Discharge Standard
- Best practices

Collaboration

- Regulators work with regulated industry, resulting in:
 - Better communication and understanding of the industry
 - Effective, science-based prevention strategies
 - Realistic expectations related to development of technologies
 - Uniform application of enforcement measures, public reporting of results

Collaboration

- Ships districted by paperwork burden
- Production is prevention
- One stop shop for reporting
- Share reporting with science
- Focus on the product = prevention in action

Conclusion

- Great Lakes Shipping now subject to 5 levels of regulators:
 - Canada
 - Seaway
 - USCG
 - EPA
 - State
- Effective prevention is offered by Canadian Regulation and USCG proposed discharge standard.

- Access to Great Lakes
 - Only ships that manage the ballast
 - (including Coastal trades)
- Uniform Standards
 - Effective and enforceable
- Monitoring and Compliance
 - Enforcement and remediation
- Early Detection
 - Monitoring Great Lakes for new arrivals

National Academies Recommendations

- Emergency Response
 - Containment or eradication
- Adaptive Management
 - Use scientific findings (feedback) to amend
- Mandate bi-national oversight
 - Use existing bi-national agencies

